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Abstract  11 

In vitro toxicokinetic data are critical in meeting an increased regulatory need to improve chemical 12 

safety evaluations towards a better understanding of internal human chemical exposure and 13 

toxicity. In vitro intrinsic hepatic clearance (CLint), the fraction unbound in plasma (Fup), and the 14 

intestinal apparent permeability (Papp) are important parameters as input in a physiologically based 15 

kinetic (PBK) model to make first estimates of internal exposure after oral dosing. In the present 16 

study we describe the key aspects that need to be considered when performing in vitro kinetic 17 

studies and explored the experimental variation in the values for these parameters as reported in 18 

literature. Furthermore, the impact that this experimental variation has on PBK-model predictions of 19 

maximum plasma concentration (Cmax) and the area under the concentration time curve (AUC0-24h) 20 

was determined. As a result of the experimental variation in CLint, Papp, and Fup, the predicted 21 

variation in Cmax for individual compounds ranged between 1.5- to 79-fold and the predicted 22 

variation in AUC0-24h ranged between 1.3- and 23-fold. These results indicate that there are still some 23 

important steps to take to achieve robust data that can be used in regulatory applications. To gain 24 

regulatory acceptance of in vitro kinetic data and PBK models it will be important that the 25 

boundaries in experimental conditions and the applicability domain, and of use of different in vitro 26 

kinetic models are clearly described in guidance documents. 27 

28 
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1. Introduction 29 

In 2020, the European Commission launched its EU Chemicals Strategy for Sustainability under the 30 

Green Deal. Key aspects of this strategy are to ban most harmful chemicals, to improve safe and 31 

sustainable chemicals by design, and to obtain a better account of potential ‘cocktail effects’ (i.e. 32 

effects upon combined exposure) of chemicals (European Commission, 2019, 2020). Such additional 33 

insights in chemical safety cannot only be obtained with traditional animal testing, which is costly 34 

and time-consuming, and therefore not applicable to large numbers of compounds. Therefore, there 35 

is an increasing need for the regulatory use of animal-free testing strategies (Arnesdotter et al., 36 

2021; Paul Friedman et al., 2020; de Boer et al., 2020). Insights in the absorption, distribution, 37 

metabolism and excretion of compounds, i.e. the kinetics, have a critical role in such animal-free 38 

testing strategies, particularly to improve the interpretation of in vitro toxicity results, allowing to 39 

estimate the internal plasma and tissue concentrations in humans after oral, dermal, or inhalation 40 

exposures, that can be related to the in vitro effect concentrations (Blaauboer, 2010; Jochem Louisse 41 

et al., 2017; Coecke et al., 2013). In addition, kinetic data are important in the interpretation of data 42 

from human biomonitoring studies, for example to translate measured urine concentrations of a 43 

compound or its metabolite(s) to related external exposures (Zare Jeddi et al., 2021). Finally, kinetic 44 

data are key to obtain better insights in dose-, species-, and route of exposure-dependent 45 

differences in internal exposure, as well as considerations of human interindividual variation and 46 

interactions between compounds (Punt et al., 2020; Paini et al., 2021).  47 

Given that particularly human toxicokinetic data are generally scarcely available for non-48 

pharmaceuticals, insights in kinetics are increasingly obtained with in vitro test systems. These 49 

include approaches that capture, for example, the intestinal, dermal, or pulmonary permeability of 50 

compounds, or test systems that capture metabolic conversions, plasma or tissue binding, or influx 51 

or efflux transporter kinetics (Blaauboer, 2014; Punt et al., 2017; Wilk-Zasadna et al., 2015). Stand-52 

alone data from such studies can, in general, not directly be used in safety evaluations, as the 53 

combined effects of different kinetic processes determines the internal exposure. Therefore, data 54 
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obtained with the different test systems need to be integrated, e.g. with help of PBK modelling 55 

(Bessems et al., 2014; J. Louisse et al., 2017; Choi et al., 2019), while taking the uptake and kinetics 56 

of various ports of entry (oral, dermal and inhalation) into account. To gain confidence in the 57 

outcomes obtained with PBK models that rely on in vitro input data, it is important to understand 58 

the robustness of the in vitro input data that are used and the combined impact of experimental 59 

variation in each of the individual parameters on the model predictions. In addition, each in vitro 60 

kinetic assay has its own inherent boundaries with respect to the conditions under which the in vitro 61 

experiments should to be performed, including , for example, boundaries with respect to the applied 62 

substrate concentration, enzyme concentration, or incubation time (Hubatsch et al., 2007; 63 

Gouliarmou et al., 2018; Seibert and Tracy, 2014). There are furthermore restrictions with respect to 64 

the applicability domain of different in vitro kinetic studies. For example, in vitro kinetic constants, 65 

measured under linear conditions, can only be used for predictions at dose-levels that would not 66 

lead to saturation of enzymes or transporters (Peters, 2012). To achieve regulatory use of in vitro 67 

kinetic studies, the robustness, experimental conditions under which the in vitro experiments need 68 

to be performed, and applicability domain of different in vitro kinetic studies needs to become more 69 

apparent.  70 

Recently, Louisse et al. (2020), collected reported intrinsic hepatic clearance (CLint) values 71 

from the literature for 30 compounds obtained with human hepatocytes, as well as information on 72 

the experimental set-ups applied. They observed up to 100-fold differences in literature reported in 73 

vitro hepatic CLint values as obtained from incubations with primary human hepatocytes, and 74 

noticed that experimental set-ups applied differed for many aspects between studies. In most 75 

studies, pooled hepatocytes were used, suggesting that differences between studies are not solely 76 

driven by interindividual differences in biotransformation activities (Louisse et al., 2020). Apart from 77 

the in vitro CLint values, the fraction unbound in plasma (Fup), and the intestinal apparent 78 

permeability (Papp) are also important parameters with which first estimates of internal 79 

concentrations can be made for oral exposure, upon using these data as input in a PBK model (Jones 80 
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and Rowland-Yeo, 2013). Experimental uncertainties related to small differences in experimental 81 

set-ups can also be expected for these input parameters. The goal of the present study was to 1) 82 

provide an overview of the aspects that need to be taken into account when performing in vitro 83 

kinetic studies to derive these parameters for oral exposure and 2) to explore the impact of 84 

experimental variation in the in vitro kinetic results on PBK model predictions. The results are 85 

discussed with respect to the potential impact of the in vitro experimental variation on regulatory 86 

decision making and the steps required for standardization of the in vitro methods.  87 

 88 

2. Materials and methods 89 

2.1 Data collection 90 

A literature search was performed to obtain an indication of the experimental variation in in vitro 91 

measured CLint, Papp, and Fup. In case of CLint, the in vitro data as collected by Louisse et al. (2020) 92 

were included in the present study. In this study, Louisse et al. (2020) performed a literature search 93 

to obtain an indication of the experimental variation in intrinsic clearances values obtained with 94 

primary hepatocytes, predominantly obtained with the substrate depletion protocol. Given that the 95 

clearance data from Louisse et al. (2020) mainly covered pharmaceuticals, an additional literature 96 

search was performed in the present study to expand the chemical domain to non-pharmaceuticals. 97 

To this end, Scopus (www.scopus.com) was used to identify papers or databases that provide 98 

relatively large datasets on in vitro metabolic clearances, measured with primary hepatocytes.  99 

For non-pharmaceuticals, the R httk database (EPA) and Black et al. (2021) were identified as major 100 

source for hepatic clearance data. For compounds for which two independent clearance 101 

measurements were found in these initial selected data sources, an additional search was 102 

performed with Google Scholar, to determine if additional clearance data could be obtained from 103 

individual scientific papers.  104 

In addition to the collection of CLint data, literature data were also collected to obtain an 105 

indication of the experimental variation in Caco-2 Papp and Fup values. To this end, Scopus 106 
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(www.scopus.com) was used to identify papers or databases that contain relatively large datasets of 107 

Caco-2 Papp values or Fup values. The final selection of Caco-2 Papp data were obtained from 108 

Hallifax et al. (2012), Neuhoff et al. (2003), Gertz et al. (2010), Estudante et al. (2015), Larregieu and 109 

Benet (2014), Li et al. (2007), and Lee et al. (2017). In case of Fup, the R httk database (EPA) and 110 

Srivastava et al (2021), Ye et al. (2016), and Ferguson et al. (2019) were identified as major sources. 111 

Table 1 provides a summary of the data obtained with the literature search on in vitro intrinsic 112 

hepatic clearance, Caco-2 Papp and Fup values for compounds from different chemical domains 113 

(pharmaceutical, chemical, food, cosmetic). A more extensive overview of the data and references is 114 

provided in the supporting information. 115 

 116 

Table 1. Model compounds and the distribution of the collected CLint, Papp, and Fup values.  117 

number compounda CLint Papp Fup 

mean CVb n mean CVb n mean CVb n 

1 Antipyrine 0.19 75 8 48 93 8 
   

2 Disopyramide 0.28 41 8 
      

3 Lorazepam 0.51 74 7 
      

4 Dapsone 0.57 97 4 
      

5 Tolbutamide 1.1 120 11 
   

0.044 50 5 

6 Diazepam 1.4 110 15 29 21 3 0.028 86 9 

7 Caffeine 1.6 130 10 37 22 4 0.97 42 3 

8 Pindolol 1.9 29 7 
      

9 S-warfarin 1.9 150 5 
   

0.013 46 9 

10 Omeprazole 2.4 63 5 
      

11 Timolol 2.7 82 8 
      

12 proxen 4.1 160 6 
      

13 Metoprolol 4.8 77 11 33 120 10 
   

14 Ketoprofen 4.8 56 11 
      

15 Prazosin 5.2 68 6 
      

16 Ibuprofen 5.3 37 5 
      

17 Diltiazem 6.2 55 12 45 55 4 0.37 38 5 

18 Quinidine 6.4 98 10 19 80 2 0.23 38 3 

19 Bosentan 7 200 7 
   

0.021 64 3 

20 Clozapine 7 59 11 
   

0.083 44 5 

21 Prednisolone 7.2 130 8 
      

22 Sildefil 7.6 54 15 
      

23 Lidocaine 8.8 78 6 
      

24 4-Nitroaniline 9.6 100 4 
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25 Midazolam 14 91 18 39 46 3 0.034 46 8 

26 Dextromethorphan 17 120 9 
   

0.39 23 4 

27 Imipramine 17 110 19 
   

0.17 38 5 

28 3,3’ ,5,5’ -
Tetrabromobisphenol 
A 

18 120 4 
      

29 Phecetin 19 110 11 
      

30 Buspirone 21 79 6 
   

0.2 71 3 

31 Nifedipine 21 88 6 
   

0.042 5 2 

32 Desipramine 21 96 9 
      

33 Ketanserin 25 82 6 
      

34 Carvidelol 29 43 8 
      

35 Verapamil 30 100 15 36 81 9 0.2 38 9 

36 Diclofenac 31 120 15 
   

0.0066 69 9 

37 Bufuralol 33 110 5 
      

38 2,5-Di-tert-
butylbenzene-1,4-
diol 

35 160 4 
      

39 Propanolol 37 220 12 
      

40 Chlorpromazine 52 140 10 
   

0.04 38 2 

42 Bisphenol A 76 70 3 36 87 3 
   

43 Ipcozole 120 80 4 
      

44 Benzylparaben 370 50 4 
      

45 Propranolol 
   

36 89 9 0.23 36 9 

46 Fluvastatin 
      

0.0061 42 2 

47 Rosuvastatin 
      

0.13 7.8 2 
a For the compounds highlighted in bold, the experimental variation in all three parameters, i.e. 118 
CLint, Papp and Fup could be determined.  119 
b CV corresponds to the coefficient of variation (CV = SD/mean x 100%) and is used as indicator of 120 
the variation in the reported kinetic values. 121 
 122 
 123 

2.2 PBK model predictions 124 

For the compounds for which the experimental variation in all three parameters, i.e. CLint, Papp, and 125 

Fup, could be determined (see Table 1), simulations were performed to explore the impact of the 126 

experimental variation on predictions of the maximum plasma concentration (Cmax) and the area 127 

under the concentration time curve (AUC0-24h). For these simulations, a published generic human PBK 128 

model code by Jones and Rowland-Yeo (2013) was used. The original model code of Jones and 129 

Rowland-Yeo (2013) was converted to R (R Core Team, n.d.) as described by Punt et al. (2021) and is 130 

provided on GitHub (https://github.com/wfsrqivive/PBPK_exp_variation.git). The generic PBK model 131 
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consists of 13 compartments, corresponding to the major organs in the body and an arterial and 132 

venous blood compartment. The model requires chemical-specific parameters for 1) intestinal 133 

uptake, 2) partition coefficients, 3) the blood:plasma ratio, 4) the fraction unbound in plasma and 5) 134 

hepatic clearance. Renal clearance is described in the model based on the glomerular filtration rate 135 

times the fraction unbound in plasma and does therefore not require any additional chemical-136 

specific input parameter. The partition coefficients were calculated with the calculation method of 137 

Rodgers and Rowland (2006). The blood:plasma ratio was assumed to be a fixed value of 1 for all 138 

compounds. The input parameters for the intestinal uptake, fraction unbound in plasma and hepatic 139 

clearance were obtained from in vitro experiments as described above. To explore the impact of the 140 

variation in CLint, Papp, and Fup on the Cmax and AUC0-24h predictions, simulations were performed 141 

with all possible combinations of CLint, Papp, and Fup for a specific compound. The codes to run 142 

these simulations are provided on https://github.com/wfsrqivive/PBPK_exp_variation.git. The 143 

simulations were performed at a low single oral dose of 0.1 mg/kg bw at which linear clearance 144 

conditions can be expected for all compounds. 145 

To determine which of the in vitro input parameters contributed most to the predicted 146 

variation in Cmax and AUC0-24h, a global sensitivity analysis was performed with RVis. To this end, for 147 

each compound, the R code of the PBK model was loaded into the RVis software (v0.15, using R 148 

4.1.1). Simulations were subsequently performed within the “Sensitivity” tab, using the e-FAST 149 

method, by adding the observed in vitro distributions (mean and CV) to the CLint, Fup and Papp 150 

parameters. Additional details on how these simulations were performed are provided in the 151 

supporting information.  152 

 153 

154 
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3. Results 155 

3.1 Background CLint measurements and evaluation of the in vitro experimental variation.  156 

Different protocols exist to measure in vitro kinetic constants for metabolism. Incubations are most 157 

frequently performed with primary hepatocytes or sub-cellular liver fractions like microsomes or S9 158 

(in the presence of relevant cofactors) (Gouliarmou et al., 2018; Lipscomb and Poet, 2008; Pelkonen 159 

and Turpeinen, 2007). Primary hepatocytes are considered the gold standard for performing in vitro 160 

metabolism studies. Generally, experiments are performed with cryopreserved primary hepatocytes, 161 

as these can be stored for a longer period making them more readily available than freshly prepared 162 

hepatocytes. Cryopreserved hepatocytes retain most of the activity of freshly prepared hepatocytes 163 

(Lipscomb and Poet, 2008). With a so-called “metabolite formation protocol”, in vitro incubations are 164 

performed at different substrate concentrations at a fixed incubation time and cell concentration 165 

(Figure 1A). The formation of metabolites is then measured in these experiments, which follows the 166 

Michaelis-Menten equation (Seibert and Tracy, 2014): 167 

v = Vmax * [compound]     eq. 1 168 
        Km + [compound] 169 
 170 

In this equation, the Vmax is the maximum velocity (e.g. µmol/min/106 hepatocytes) and the Km is 171 

the Michaelis-Menten constant with unit µM (Peters, 2012). A key advantage of this approach is that 172 

the kinetic constants obtained can be used to describe the formation of metabolites, and allows to 173 

account for concentration dependent saturation of the enzymes. A disadvantage of this protocol is 174 

that standards of the metabolites are required for quantification. Given that such standards cannot 175 

be easily obtained for most compounds, the metabolic conversion of compounds is more frequently 176 

measured with a so-called “substrate depletion approach” in which the disappearance of a compound 177 

is measured over time to derive CLint based on the slope of the substrate depletion curve (Jones and 178 

Houston, 2004). One of the most critical aspects of substrate depletion experiments is that the 179 

substrate concentration should be well below the Km, as only then the rate, v, can be simplified as 180 

depicted in Equation 2 (Seibert and Tracy, 2014). 181 
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v = Vmax * [compound] = CLint*[compound]   eq. 2 182 
       Km  183 
 184 

The obtained CLint values can therefore only be used in situations where no saturable metabolism is 185 

to be expected. This can be explored with in vitro range finding experiments at different 186 

concentrations to determine at which concentrations saturation of metabolism occurs (Sjögren et al., 187 

2012; Nichols et al., 2018). First estimates of the internal concentrations with a PBK model can be used 188 

to determine if these saturable conditions are likely to be reached in the liver. Other aspects that need 189 

to be considered when performing in vitro metabolic clearance studies are e.g. the protein amount in 190 

the incubation mixture, whether or not serum is added to the incubation, number of time points and 191 

sampling schedule, the percentage of test item consumption at the end of the incubation, and aspects 192 

related to the analytical techniques that are used to analyse the sample (Louisse et al., 2020a; 193 

Gouliarmou et al., 2018).  194 

 195 

 196 

 197 

Figure 1. Examples of A) Michaelis–Menten kinetics with a Km of 25 µM and Vmax values of 100 198 

nmol/min/106 hepatocytes and B) a metabolic clearance study with a t1/2 of 30 min and a CLint of 199 

ln(2)/30 = 0.02 ml/min/10^6 hepatocytes when performed in an incubation that contains 106 200 

hepatocytes per ml. 201 

 202 
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Figure 2 shows the experimental variation in in vitro metabolic clearance studies as obtained 203 

from the literature. For the majority of the compounds, the CLint measurements varied over a 100-204 

fold, generally ranging between values that are 5-fold higher and 20-fold lower than the mean of a 205 

specific compound. The results from Figure 2, also reveals that the variation in CLint is consistent 206 

over the different compounds. This is corroborated by a Levene’s test on equal variances, revealing 207 

no statistical differences in the variance for most of the compounds (Results provided in the 208 

supporting information). This consistency in experimental variation over a range of different 209 

compounds provides an indication of the variation that can be expected from in vitro metabolic 210 

clearance studies with primary hepatocytes.  211 

 212 

 213 

Figure 2. Variation in in vitro CLint (µL/min/106
 cells) measurements. The histogram depicts the 214 

combined distribution of the variation over the different compounds. The values represent the 215 

normalized CLint values, corresponding to the CLint values obtained for a specific compound, divided 216 

by the mean of these values for the specific compound.  217 

 218 

3.2 Background Caco-2 Papp measurements and evaluation of the in vitro experimental variation.  219 

The Caco-2 cellular model of intestinal absorption is one of the most frequently used in vitro cell 220 

models to study the rate of transport of compounds over the intestinal cell membrane. Although Caco-221 

2 cells are derived from a human colon carcinoma, the cells mimic the epithelial barrier of the small 222 

intestine when cultured in a monolayer (Hubatsch et al., 2007). For in vitro Papp measurements, the 223 

cells are grown in a so-called Transwell system, in which the cells are seeded on a permeable filter 224 
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insert and are cultured for about 21 days to form a monolayer. To measure the cellular transport of a 225 

compound, the cell culture medium at the apical compartment of the Transwell is replaced by a 226 

transport buffer in which the compound is dissolved and the cell culture medium at the basolateral 227 

compartment is replaced by the transport buffer, often containing bovine serum albumin to mimic 228 

the blood compartment (Hubatsch et al., 2007). A critical aspect of Papp measurements is that the 229 

experiments are performed under a concentration gradient, otherwise diffusion cannot take place. 230 

This means that the time-range in which the absorption studies are performed need to be optimized 231 

to make sure that less than 10% of the compound is diffused to the basolateral compartment (also 232 

called sink-conditions) (Usansky and Sinko, 2005). Such sink conditions provide the best 233 

representation of the physiological conditions, as a concentration gradient between the gut lumen 234 

and the plasma will exist in vivo due to distribution of the chemical in the body after absorption. In 235 

addition, it should be noted that Caco-2 experimental results often vary between labs and with 236 

batches of cells. Therefore, a range of reference substrates should be included in the experimental 237 

setup to normalize the results. A final important experimental aspect that can affect the Papp 238 

measurement is the pH gradient that is applied between the apical and basolateral compartment. A 239 

pH gradient of 6.5-7.4 provides the best representation of the physiological conditions between the 240 

intestine and blood (Neuhoff et al., 2003).  241 

Figure 3 shows the experimental variation in in vitro reported Papp values. For the three 242 

compounds for which most Caco-2 Papp measurements are available (i.e. metoprolol (13), verapamil 243 

(35), and antipyrine (1)), the variation in Papp values appears to range over 40 to 60-fold, ranging 244 

between values that about 3 to 4-fold higher and about 15-fold lower than the mean Papp of a specific 245 

compound. For the remaining compounds, less data was available and the results revealed a 1.5 to 5-246 

fold variation. 247 

 248 
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249 

Figure 3. Variation in in vitro Caco-2 Papp (cm-6/s) measurements. The histogram depicts the 250 

combined distribution of the variation over the different compounds. The values represent the 251 

normalized Papp values, corresponding to the Papp values obtained for a specific compound, divided 252 

by the mean of these values for the specific compound.  253 

 254 

3.3 Background Fup measurements and evaluation of the in vitro experimental variation.  255 

Various methods have been developed to measure Fup, of which the equilibrium dialysis test system 256 

being most commonly applied. For these experiments, so-called equilibrium dialysis devices are 257 

used, which consists of a bas plate and different dialysis inserts. Each of dialysis inserts consists of 258 

two chambers separated by a dialysis membrane. The human plasma, generally containing 2 to 5 µM 259 

of the substrate, is added to one chamber and phosphate-buffered saline (PBS) to the other (Ryu et 260 

al., 2021). The concentrations in the two chambers is monitored until an equilibrium is reached. The 261 

equilibrium dialysis techniques particularly poses challenges with measuring the fraction unbound 262 

for highly bound compounds. For these compounds the levels in the receiving PBS chamber will be 263 

close to the limit of detection, resulting in unmeasurable Fup values. For highly bound compounds, 264 

modified equilibrium dialysis have therefore been proposed, including bidirectional equilibrium 265 

dialysis, dilution methods and pre-saturation methods (Ferguson et al., 2019; Wambaugh et al., 266 

2019).  267 

 To obtain insights in the variation in Fup measurements, a literature search was performed to 268 

find reported Fup values for a range of compounds. Figure 4 reveals the experimental variation in in 269 

vitro derived Fup values for a range of compounds. Given that the Fup values can only range between 270 
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0 and 1, as the Fup is a fraction, the extent of variation in the Fup estimates appears to be less than 271 

observed for CLint and Caco-2 Papp values as described above. The largest experimental variation is 272 

observed for diclofenac (34) with Fup values ranging from 0.0015-0.02, corresponding to a 13-fold 273 

range. 274 

 275 

Figure 4. Variation in in vitro Fup (unitless) measurements. The histogram depicts the combined 276 

distribution of the variation over the different compounds. The values represent the normalized Fup 277 

values, corresponding to the Fup values obtained for a specific compound, divided by the mean of 278 

these values for the specific compound. 279 

 280 

3.4 Impact of the combined variation in CLint, Papp and Fup on the PBK model-predicted Cmax 281 

and AUC0-24h. 282 

For the six compounds within the dataset for which CLint, Papp and Fup data from different studies 283 

were available, the combined effects of the experimental variation in the three input parameters on 284 

the PBK model predictions were determined. The results of these predictions are depicted in Figure 285 

5. For every chemical, each available CLint value was combined with each available Papp value, and 286 

each CLint-Papp combination was in turn combined with each available Fup value for a specific 287 

compound. Figure 5 reveals that the impact of the variation in experimental conditions on the PBK-288 

model predictions is different for each compound. The lowest variation in Cmax and AUC0-24h 289 

predictions occurs for the low-clearance compound diazepam (6), revealing only a 1.5-fold range in 290 

predicted Cmax values and 1.3-fold range in predicted AUC0-24h. The highest variation in both Cmax 291 

and AUC0-24h predictions occurs for the high-clearance compound verapamil (35), revealing a 79-fold 292 
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range in predicted Cmax and a 16 -fold range in predicted AUC0-24h. A high variation in AUC0-24h of 23-293 

fold is also observed for caffeine (7).  294 

  295 

Figure 5. Variation in PBK model-predicted Cmax (A) and AUC0-24h (B) as a result of the variation in 296 

reported in vitro CLint, Papp and Fup values.  297 

 298 

3.5 Relative contribution of the different input parameters to the variation in predicted Cmax and 299 

AUC0-24h values.  300 

Figure 6 depicts the results of the global sensitivity analysis that was performed to determine which 301 

of the three input parameters (i.e. CLint, Papp, and Fup) contribute most to the variation in Cmax 302 

and AUC0-24h predictions as observed in Figure 5. Experimental variation in CLint had the highest 303 

impact on AUC0-24h predictions for all compounds and for three out the six compounds also on the 304 

Cmax predictions (caffeine (7), diltiazem (17) and verapamil (35)). The observed variation in Cmax 305 

predictions for these compounds, can thus largely be attributed to the variation in CLint. The 306 

experimental variation in uptake parameter Papp had no influence on the AUC0-24h predictions, but 307 

does have an impact on the Cmax predictions of two out of the six compounds (diazepam (6) and 308 

quinidine (18)). The relative sensitivity towards experimental variation in Fup values was found to be 309 

lower than for CLint.  310 
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 311 

Figure 6 . Relative sensitivity of the Cmax (A) and AUC0-24h (B) prediction to the variation in CLint, 312 

Papp and Fup, as obtained with the RVis global sensitivity analysis. The relative sensitivity 313 

respresents the relative contribution of each of the three parameters to the variation in Cmax or 314 

AUC0-24h as observed in Figure 5. For example, in case of caffeine (7), the variation in CLint accounted 315 

for 82% of the total variation in Cmax predictions, whereas variation in Fup and Papp contributed 316 

with 14% and 0.6%, respectively. The remaining 3.4% variation is caused by the interaction between 317 

these different parameters as depicted in the supporting information.  318 

 319 

320 
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4. Discussion 321 

With the present study we described various aspects that need to be taken into account when 322 

performing in vitro CLint, Caco-2 Papp and Fup kinetic studies and explored the experimental 323 

variation observed with these parameters and the impact that this experimental variation has on 324 

PBK-model predictions of Cmax and AUC0-24h. As a result of the observed experimental variation in 325 

CLint, Papp, and Fup, the PBK-predicted Cmax for compounds for which these three parameters 326 

were available, was found to range between 1.5- to 79-fold and the AUC0-24h ranged between 1.3- 327 

and 23-fold. The extensive variation in Cmax and AUC0-24h predictions, as observed for some of the 328 

compounds, indicates that the in vitro kinetic data are currently not robust enough to make reliable 329 

predictions of the in vivo kinetics of a compound without means to evaluate the adequacy of a 330 

specific in vitro kinetic parameter or PBK-model prediction.  331 

To gain confidence in in vitro kinetic parameters and PBK model predictions, comparisons 332 

with in vivo experimental animal or human kinetic data are currently being requested in various 333 

regulatory guidelines (e.g. SCCS, 2018; EMA, 2018; OECD, 2021). This approach of model evaluations 334 

against in vivo data is at present, however, mainly successful within the pharmaceutical domain as 335 

only for pharmaceuticals sufficient clinical data are available (EMA, 2018; Punt et al., 2017). For 336 

many other chemical domains the availability of experimental animal or human in vivo kinetic data is 337 

limited, and evaluations against in vivo kinetic data is often not possible. For a transition to next 338 

generation (animal-free) regulatory risk evaluations to happen, other means to gain confidence in 339 

the in vitro kinetic data and PBK-model predictions are therefore urgently needed. Application of 340 

uncertainty factors to the in vitro-based PBK-model predictions might be one way to take the 341 

uncertainties related to the in vitro experimental variation into account. The results of the present 342 

study indicate, however, that large uncertainty factors may then be required to cover the impact of 343 

potential experimental variation. It will therefore be more critical to improve the robustness of in 344 

vitro kinetic data and to improve the possibilities within regulatory risk evaluations to evaluate the 345 

quality of in vitro kinetic data and the adequacy of an in vitro study design.   346 
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As described in the present study, each in vitro kinetic test system has its own set of 347 

inherent boundaries and restrictions with respect to how the data can be used in a regulatory 348 

context. Critical to the in vitro experimental setup are e.g. the selection of the substrate 349 

concentration, the incubation time, or concentration of enzyme that is used (Louisse et al., 2020). In 350 

addition, considerations of the loss of a chemical due to sticking to the plastic or from evaporation 351 

are important to take into account in the experimental setup (Groothuis et al., 2015). At present, 352 

various protocols for performing in vitro kinetic studies to derive values for CLint, Papp, and Fup are 353 

available in the scientific literature (e.g. Watanabe et al., 2018; Cai and Shalan, 2021; Hubatsch et al., 354 

2007) and describe these critical aspects that need to be considered. Our study shows that a next 355 

step would be to formalize these literature available protocols and to describe the applicability 356 

domain/use in a regulatory context. It should, however, be noted that most of the protocols have 357 

been developed within the pharmaceutical domain and also most experience with the predictive 358 

performance of the different in vitro kinetic studies comes from the pharmaceutical domain. 359 

Compounds, like pesticides, biocides, industrial chemicals, cosmetic ingredients and food related 360 

compounds generally have a broader range of physicochemical properties than pharmaceuticals and 361 

can contain, for example, compounds that are highly lipophilic or volatile (Andersen et al., 2019; 362 

Ferguson et al., 2019). Recently, Black et al. (2021) also observed that a starting concentration of 1 363 

μM, that is generally applied for pharmaceutical compounds for metabolic clearance studies, may be 364 

insufficient to achieve first-order reaction conditions for some non-pharmaceuticals. These are all 365 

aspects that need to be considered when formalizing existing protocols. At present, there are no 366 

guidance documents available that arrange these type of considerations. Recently, the OECD 367 

published a guidance document on a workflow for characterising and validating PBK models (OECD, 368 

2021). The quality of the in vitro input data is not explicitly taken into account in this guidance 369 

document yet. The results of the present study indicate that the quality of the model predictions will 370 

be as good as the quality of the input data. The development of guidelines on the design of in vitro 371 
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kinetic studies will therefore be a critical follow up step to this guidance document to gain 372 

confidence in PBK model predictions.  373 

Apart from guidance documents on the design of in vitro kinetic studies, guidance 374 

documents will also be needed with respect to the applicability of different in vitro kinetic studies 375 

with respect to meeting specific regulatory needs. The in vitro kinetic data discussed in the present 376 

study, can for example only be used to make first tier estimates of plasma concentrations of the 377 

parent compound after oral exposure (Jones and Rowland, 2013). Simulations of inhalation and 378 

dermal exposure will require additional kinetic input data on in vitro lung and dermal absorption to 379 

mimic these respective exposure routes. The first tier estimates of plasma Cmax and AUC0-24h after 380 

oral exposures do also not yet take the contribution of metabolites, possible saturation of 381 

biotransformation enzymes, possible involvement of transporters, or possible extrahepatic 382 

metabolism into account. At present it remains particularly difficult to determine when additional 383 

kinetic processes, like transporter kinetics or extrahepatic metabolism, need to considered for a 384 

specific compound (Sager et al., 2015). Additional research is still needed to define the 385 

characteristics of chemicals that require the inclusion of these additional kinetic processes (Punt et 386 

al., submitted).    387 

Whereas the present study focussed on the impact of variation in reported in vitro CLint, 388 

Fup and Papp values on PBK model predictions, other in vitro kinetic parameters could be relevant 389 

as well. Metabolic clearance is, for example, not only measured with primary hepatocytes, but also 390 

with liver microsomes and S9. In addition, in situations where dose-dependent kinetics are of 391 

importance, the Michaelis-Menten constants (Km and Vmax) need to be derived from the in vitro 392 

metabolism studies. Moreover, in vitro transporter kinetic data (e.g. intestine, kidney and liver 393 

transporters) are important for the kinetics of some compounds. A similar description of 394 

experimental boundaries and the applicability domain will be needed for each of these studies. 395 

Apart from the in vitro kinetic data, in silico predictors of different kinetic parameters have been 396 

developed as well. Particularly the prediction of partition coefficients (determining the distribution 397 
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of compounds in different organs) depends on the use of these calculators, as these parameters are 398 

difficult to obtain with in vitro experiments. Recently, Punt et al. (submitted) revealed that 399 

significant differences can occur as a result of the use of different calculators. For example, the 400 

calculation method of Berezhkovskiy (Berezhkovskiy, 2008) led frequently to underpredictions of the 401 

Cmax of acidic compounds (pKa<6), whereas the calculation method of Schmitt (Schmitt, 2012) 402 

appeared to perform less well for highly lipophilic compounds (Punt et al., submitted). The 403 

calculation method of Rodgers and Rowland (Rodgers and Rowland, 2006) performed overall best, 404 

and was also applied in the present study to predict the partition coefficients of the different 405 

compounds.  406 

Overall the results of the present study indicate a strong impact of experimental variation in 407 

CLint, Papp and Fup on Cmax and AUC0-24H predictions. This implies that steps need to be taken to 408 

reduce experimental variability and the associated uncertainty in order to increase the confidence in 409 

these in vitro kinetic data for regulatory use. To this end, it will be crucial that the in vitro 410 

experiments are performed in a standardized way and thereby meet the regulatory needs. In 411 

addition, the chemical and regulatory applicability domains of the in vitro test systems and kinetic 412 

models need to be clearly described. Therefore, it is important that existing protocols are formalized 413 

in guidance documents to improve harmonisation of testing procedures and correct usage of test 414 

findings. 415 
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